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Abstract 

Most production planning models are deterministic and often assume a linear relation between 

production volume and production cost. In this paper, we investigate a production planning problem 

in a steel production process considering the energy consumption cost which is a nonlinear function 

of the production quantity. Due to the uncertain environment, the production demands are 

stochastic. Taking a scenario-based approach to express the stochastic demands according to the 

knowledge of planners on the demand distributions, we formulate the stochastic production 

planning problem as a mixed integer nonlinear programming (MINLP) model. 

Approximated with the piecewise linear functions, the MINLP model is transformed into a mixed 

integer linear programming model. The approximation error can be improved by adjusting the 



linearization ranges repeatedly. Based on the piecewise linearization, a stepwise Lagrangian 

relaxation (SLR) heuristic for the problem is proposed where variable splitting is introduced during 

Lagrangian relaxation (LR). After decomposition, one subproblem is solved by linear programming 

and the other is solved by an effective polynomial time algorithm. The SLR heuristic is tested on a 

large set of problem instances and the results show that the algorithm generates solutions very close 

to optimums in an acceptable time. The impact of demand uncertainty on the solution is studied by 

a computational discussion on scenario generation. 
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1. Introduction 

Iron and steel industry is an essential sector in economy. This sector consumes extensive energy 

since most iron and steel production operations are performed at high temperature. Energy cost 

accounts for a large proportion of the total production cost. Therefore, energy saving in production 

is of great significance for steel companies to reduce cost and stay competitive. This motivates us to 

study the production planning problem in a hot rolling mill with the objective to minimize the energy 

consumption. 

In the hot rolling production process studied in this paper, steel slabs are first heated up to the 

required temperature in the heat furnace. Then the heated slabs are rolled, on the hot rolling mills, 

into hot strips according to the specification of the demands. Finally, the hot strips are temporarily 

stored in the strip yard waiting to be delivered to customers or to be further processed in the 

downstream processing stages. This integrated production process is illustrated in Fig. 1. For 

convenience, we will call the slabs or strips products hereafter. In practice there are capacity 

restrictions for heating, hot rolling as well as stock holding. The total cost of the integrated 

production process includes production cost, especially the cost on energy consumption, and 

inventory cost for finished products. For each type of product produced in a period, the cost on 

rolling includes a setup cost associated with the product type and a variable cost proportional to the 

production quantity. Due to the special feature of the heat furnace, its energy consumption cost is 

nonlinear with respect to the production quantity. So the production planning in this integrated steel 

production process needs to consider nonlinear cost. 



 

Fig. 1. The production process under consideration. 
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process is affected by the demands of products which are full of uncertainty. The uncertainty may be 

caused by production plan changes in downstream stages or the random arrival of customer orders. 

Ultimately and to a large extent it comes from fluctuations in the world steel market. For example, 

demands of steel products are affected by the prices which are in turn affected by the prices of 

energy and raw materials such as iron ore. On the other hand, demands also have an impact on 

prices. Moreover, demands of steel products are also influenced by the economic situation, 

government policies, protectionism, etc. Because of the variety of direct and indirect impacting 

factors, demands can hardly be forecasted accurately. Therefore this problem needs to consider 

stochastic demands caused by these factors. 

There has been extensive research in the general field of production planning with a large 

proportion concerning linear production cost. In terms of deterministic circumstances, Bahl et al. [2] 

provide a survey about lot sizing problems in production planning and Karimi et al. [13] provide a 

review of models and algorithms for single-level multi-product capacitated lot sizing problems. In 

addition, Xie and Dong [24] propose heuristic genetic algorithms for general capacitated lot sizing 

problems. Jans and Degraeve [11] review various meta-heuristics that are specially developed for lot 

sizing problems. Minner [14] analyzes three simple heuristics for multi-product dynamic lot sizing 

problem with limited warehouse capacity. In terms of stochastic circumstances, a review of models 

for production planning under uncertainty is given by Mula et al. [15]. Sox [19] develops an optimal 

solution algorithm for the single-item dynamic lot sizing problem with random demand and non-

stationary costs. Bakir and Byrne [3] develop a two-stage stochastic linear programming model for 

the multi-product multi-period problem with stochastic demands. Haugen et al. [10] address a 

stochastic version of the classical W-W model (Wagner and Whitin [23]) with an extension of the 

backlogging possibility and develop a meta-heuristic based on progressive hedging. The model they 

study is single-item and no capacity constraints are considered. In recent years, Brandimarte [5] 

considers a stochastic version of the classical multi-item capacitated lot sizing problem and propose 

a heuristic algorithm based on a fix-and-relax strategy. Azaron et al. [1] develop a polynomial 

algorithm for the single-product multi-period lot sizing problem with concave inventory cost and 

linear stochastic production cost. Related to steel industry, Tang et al. [21] provide a review of 

planning and scheduling methods for integrated steel production. They classify the optimization 

methods for steel production planning and scheduling into four types and review literature 

associated with each type. 

Production planning problems concerning nonlinear production cost are not so widely investigated 

as that of linear production cost. Gutiérrez et al. [9] address a single-item lot sizing problem with 

uncertainty demands and concave production and holding costs. Rizk et al. [17] investigate the 



multi-item lot sizing problems with piecewise linear resource costs. Chazal et al. [7] study the 

deterministic single-product production planning problem of a profit-maximizing firm with convex 

production and storage cost. Since the production planning problem we are facing includes multiple 

items with stochastic demands and nonlinear production cost, previous approaches are not 

applicable. 

In the field of electricity generation, the generation cost is convex increasing [20], which has a similar 

feature to the cost in our problem. However, there are many differences between the electricity 

generation problem and the production planning problem in this paper. A main difference is that 

electricity is non-storable so that no inventory cost needs to be considered. Therefore, approaches 

developed for the electricity generation problem cannot be applied to our problem. 

In this paper, the studied multi-item multi-period production planning problem with nonlinear 

production cost and stochastic demands is formulated as a MINLP model according to a scenario-

based approach. The objective is to minimize both the inventory cost and the production cost. As the 

problem is large-scale and it is impractical to solve it by using a commercial solver, a heuristic 

algorithm is devised for this problem. The main difficulty in developing the heuristic is in dealing with 

the nonlinear cost in the objective function. Oh and Karimi [16] take a multi-segment separable 

programming approach to help solving the nonlinear difficulty met in their lot-sizing problem. Taking 

a similar approach, we propose a SLR heuristic for our problem. The proposed heuristic is tested and 

its effectiveness is verified through computational experiments. 

The remainder of the paper is organized as follows. In the next section, the MINLP model is 

formulated for the problem after the energy consumption feature of the heat furnace is discussed in 

detail. Section 3 is devoted to devising our heuristic for the problem. An approximate formulation is 

developed and a SLR heuristic is presented. In Section 4, computational experiments are reported. 

Finally, the paper is ended with our conclusions and directions for future research in Section 5. 

2. Problem description and formulation 

We consider the production planning problem for the integrated production process from the heat 

furnace, through hot rolling, to the storage yard of rolled products. The objective is to minimize the 

total production and storage cost. The production cost in hot rolling and the storage cost of rolled 

products are typical linear functions of production quantity and inventory level, respectively, while 

the cost of heat furnace is mainly on energy consumption. The production plan needs to consider 

stochastic demands for products and backlogging is not permitted. Based on the practical production 

process, there is no delay between the heating process and hot rolling because heated products are 

charged directly into the hot rolling mill as soon as they come out of the heat furnace. The 

production planning problem under consideration takes a day as its planning period. 

The rest of this section is organized as follows. The special feature of the energy consumption cost of 

the heat furnace is discussed in Section 2.1. The way of modeling stochastic demands is discussed in 

Section 2.2. A MINLP model for the stochastic production planning problem is formulated in Section 

2.3. 

2.1. Energy consumption feature of the heat furnace 



There are different types of heat furnaces in the steel-rolling mill. Each type of furnace has a 

different relation between the energy consumption and the products quantity heated. Here, the 

furnace considered is of the type for which the relative distribution of heat along the furnace length 

is fixed. It does not change with the products quantity or the heat provided in the furnace. 

Meanwhile, the state of the heat furnace usually remains “on” since starting up the furnace needs 

a considerable cost. When there is no product in the furnace, a fixed energy consumption cost is 

incurred for heat preservation of the furnace. According to the work feature of this type of heat 

furnace, Yu et al. [25] develop the relationship between the quantity of the products heated and the 

energy consumption cost per period as  

(1) 

E=E0exp(rx), 

Here E denotes the energy consumption cost and x denotes the amount of products heated in the 

heat furnace per period. E0 is a constant indicating the energy consumption cost when there is no 

product in the heat furnace (x=0) and r is a positive constant associated with the furnace. 

Equivalently, the energy consumption cost per unit of production quantity per period is  

(2) 

E/x=E0exp(rx)/x. 

It can be seen that function E/x is convex and achieves its minimum value at x0=1/r. Clearly if only 

the energy consumption cost in the furnace is considered, x0=1/r is the optimal production quantity. 

The above analysis indicates that there is an exponential relationship between the heating quantity 

and the unit energy consumption in the heat furnace. Therefore it is not realistic to assume the 

production cost as a linear function of the production quantity in the system. To model the 

production planning problem accurately, we adopt the nonlinear unit energy consumption cost 

function (2) to express the associated production cost. 

2.2. Modeling the stochastic demands 

Statistical method for dealing with uncertainty is to express an uncertain parameter as a random 

variable with its distribution function. However, obtaining the distribution function exactly is not 

easy usually because of lacking enough information. Even if the exact distribution is given, the 

resulting stochastic optimization problem is notoriously hard to solve. Here, we use a scenario-based 

approach to express the uncertain demands as a set of demand scenarios according to the 

knowledge of the planners on the demand distributions. This is a popular approach for modeling 

uncertainty and has been effectively used in the stochastic unit commitment problem [20], the 

stochastic technology choosing and capacity planning problem [8] and many other stochastic 

problems. 

According to this approach, the possible evolution cases of the stochastic demands throughout the 

planning horizon are assumed to be of finite number and represented with a set of demand 

scenarios. Meanwhile, each scenario is assigned a weight to reflect the probability of its realization. 

That is, we describe the stochastic demands as follows:  



 

where S is the set of demand scenarios, I is the set of products, T is the set of periods in the planning 

horizon, dit is the stochastic demand for product i in period t, i∈I, t∈T, and is the demand for 

product i in period t in scenario s, i∈I, t∈T, s∈S, and Ps is the probability of scenario s, s∈S. To 

describe the evolution feature of the stochastic demands, the scenarios are modeled as a tree 

structure and a scenario is represented as a path from the root node to a terminal node as 

illustrated in Fig. 2. For a given period t, the demand realization in the subsequent periods is invisible 

and non-anticipatable. The branches in the subsequent periods may express the possible realization.  

 

Fig. 2. An example of scenario tree for stochastic demands of two products over three periods. 
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some scenarios may share the same demand path from the first period up to a certain time period. 

Scenarios 1, 2, and 3 share the same demand path in period 1 and , 

. Scenarios 2 and 3 share the same demand path from period 1 to period 2 and 

, . Because of the invisibility and non-anticipativity feature in the 

subsequent periods, scenarios sharing the same demand path before and in period t are 

indistinguishable in period t. In Fig. 2, scenarios 1, 2, and 3 are indistinguishable in period 1 and 

scenarios 2 and 3 are indistinguishable in period 2. For the indistinguishability of scenario 

information, we use the term, scenario bundle, mentioned by Rockafellar and Wets [18] to 

formulate it. A scenario bundle in a period is a set of indistinguishable scenarios in this period. Two 

scenarios, s and j, are members of the same bundle in period t if and only if holds for 1≤τ≤t 

and all i. Obviously, each scenario belongs to only one bundle in a period. Let Q(t, s) denote the set 

of scenarios corresponding to the scenario bundle including scenario s in period t. Then in Fig. 2, Q(1, 

1)=Q(1, 2)=Q(1, 3)={1, 2, 3}, Q(2, 1)={1}, Q(2, 2)=Q(2, 3)={2, 3}, Q(3, 1)={1}, Q(3, 2)={2}, Q(3, 3)={3}. 



If two scenarios are indistinguishable in period t, the associated decisions made for these scenarios 

in period t are the same. In Fig. 2, the decisions made for scenario 2 in period 2 are the same as 

those for scenario 3. Based on the scenario bundle defined above, this decision feature will be 

reflected by introducing the indistinguishability constraints to the formulation of the problem. 

2.3. The model 

We first define the parameters and decision variables in the following:  

Parameters 

cit 

unit hot rolling cost for product i in period t, i∈I, t∈T; 

hit 

unit inventory holding cost for product i in period t after hot rolling, i∈I, t∈T; 

Seit 

setup cost for product i in period t, i∈I, t∈T; 

Invmax 

capacity for inventory holding of the store yard after hot rolling; 

Invi0 

initial inventory of product i over the planning horizon, i∈I; 

 

maximum amount of products allowed to be heated in the heat furnace in period t, t∈T; 

 

maximum amount of products allowed to be rolled on the hot rolling mills in period t, t∈T; 

α 

yield ratio from slabs to strips, i.e., the amount of strips produced by one unit amount of slabs; Its 

value is positive and smaller than 1; 

M 

a positive real number large enough. 

Decision variables 

 



amount of product i entering the heat furnace and hot rolling mills in period t in scenario s, i∈I, t∈T, 

s∈S; 

 

amount of product i produced from hot rolling mills in period t in scenario s, i∈I, t∈T, s∈S; 

 

a binary variable indicating whether product i is rolled on the hot rolling mill in period t in scenario s, 

i∈I, t∈T, s∈S; 

 

inventory of product i at the end of period t in scenario s, i∈I, t∈T, s∈S. 

In order to distinguish between the problem and its approximate version appeared in the later 

section, we call the problem after modeling the stochastic demands using the scenario-based 

approach the original problem which can be formulated as follows. 

Original problem (OP) 

Minimize gO, with  

(3) 

 

subject to  

(4) 

 

(5) 

 

(6) 

 

(7) 

 

(8) 

 

(9) 



 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

(14) 

 

(15) 

 

Expression (3) offers the optimization objective. The objective is to minimize the weighted average 

costs under all scenarios over the planning horizon for heating, hot rolling, and inventory holding. 

Each weight of the cost is the probability of the associated scenario. Eqs. (4) represent the inventory 

balance constraints. Eqs. (5) reflect the fact that there is an output-to-input ratio for hot rolling due 

to the material losses in the process. Inequalities (6) represent capacity constraints of inventory 

holding. Inequalities (7) and (8) represent production capacity constraints for heating and hot rolling, 

respectively. Inequalities (9) show the variables consistency between and . Eqs. (10), (11), 

(12) and (13) indicate the indistinguishability constraints on decision variables. Inequalities (14) 

define the nonnegative value fields for the continuous variables, while constrains (15) show the 

binary evaluation of the integer variables. 

Since gO increases as the production quantity increases and no backlogging is permitted, the final 

inventories in the optimal solution must be zero, i.e.,  

(16) 

 

where |·| is the norm of a set. Based on constraints (4), (5) and (16), we have  

(17) 

 

Replacing and in (3) with (5) and (17), respectively, we get  



(18) 

 

Here a constant term, , is omitted 

from (18) since it has no effect on the solution. 

Compared with the traditional production planning model, the classical W-W model for example, the 

above model shows the following characteristics.  

(1) 

The W-W model considers the single-item problem and the main task is to minimize only the sum of 

two types of costs, order cost and stock holding cost. Our model includes multiple items, which are 

interconnected through the capacity constraints. Besides, our model considers the balance of more 

cost elements including setup cost, production cost proportional to production quantity, energy 

consumption cost, and inventory holding cost. 

(2) 

Since the energy consumption cost includes an exponential function, the objective function is 

nonlinear, which results in a MINLP problem and endows the problem solving with challenge. 

(3) 

Demands are stochastic, which is closer to the practical production. Meanwhile, the approach 

expressing uncertainty introduces a set of scenarios. This adds another dimension, scenario, to the 

model and makes it different from deterministic models. However, this approach inevitably results in 

a large-scale MINLP problem since the problem size increases as the number of scenarios associated 

with the uncertainty increases. For example, in a problem with |T| periods and a scenario tree 

structure illustrated in Fig. 3, the number of scenarios is 2
|
T

|−1, which increases exponentially as the 

planning horizon extends.  

 



Fig. 3. An example of scenario tree structure with a |T|-period horizon. 

 

Figure options  

• View in workspaceDownload full-size imageDownload as PowerPoint slide3. Heuristic 

algorithm 

In this part, a heuristic is devised for problem OP. It is a stepwise procedure alternately carrying out 

the linear approximation and applying the LR solution algorithm. In each cycle, the procedure 

includes two stages. In the first stage, the approximation range is updated according to the results of 

the last cycle so that a better solution may be found and the exponential term in problem OP is 

approximated linearly over this range. In the second stage, the approximate problem is solved using 

a variable splitting-based LR algorithm. Based on our heuristic, an upper bound for the optimal 

objective values of both the original problem and the approximate problem is presented. At the end 

of this part, a comparison between this paper and that of Carøe and Schultz [6] is given. 

3.1. Linear approximation 

To handle the nonlinear intractability of the problem, the linear approximation is adopted to over-

approximate the nonlinear term with a piecewise linear function. First, we impose a 

lower bound and an upper bound on since is non-negative and finite. The lower and 

upper bounds can be found by analyzing the constraints on . A pair of obvious bounds is 

and , where . Then, the interval is 

divided into |H| equal subintervals with the length of , where H is the set of 

subintervals indexed with h and . Finally, over-approximating the curve 

with a piecewise linear function, we get  

(19) 

 

where  

(20) 

 

(21) 

 

 



is the slope of the piecewise linear function in the hth subinterval. Furthermore, to make the 

approximation mathematically legitimate, the following conditions must be satisfied:  

(22) 

 

(23) 

 

(24) 

 

Replacing the exponential function in (18) with (19), we can obtain the approximate formulation of 

problem OP as follows. 

Approximate problem (AP) 

Minimize gA, with  

(25) 

 

subject to  

(26) 

 

(27) 

 

(28) 

 

and constraints (7), (8), (9), (10), (12), (15), (20), (21), (22), (23) and (24).  

In (25), a constant term  

 

is omitted since it has no effect on the solution.  



Problem AP is NP-hard since one of its special cases, a multi-item lot-sizing problem with capacity 

constraints, has been proved to be NP-hard. Consequently, no polynomial time algorithm can be 

found to solve it exactly. For problem AP, we are going to devise a variable splitting-based LR 

algorithm according to the characteristics of the model. 

3.2. Variable splitting-based LR 

LR plays a primary role in dealing with large-scale separable mixed integer programming problems in 

the past decades. The key idea of this method is to relax the coupling constraints through 

introducing Lagrangian multipliers and decompose the complicated problem into some simple 

subproblems or many small-scale subproblems. Given the Lagrangian multipliers, the relaxed 

problem provides a lower bound for the optimal primal objective value in a minimization problem. 

Generally, by way of updating the Lagrangian multipliers effectively, the lower bound can be 

improved gradually. 

To diminish the loss of information included in the coupling constraints and improve the 

performance of the algorithm, variable splitting is introduced into the LR algorithm. Variable splitting 

is an effective method for getting a stronger lower bound. Jörnsten and Näsberg [12] have used this 

approach in solving the generalized assignment problem. Barcia and Jörnsten [4] have improved this 

method by combining it with bound improving sequences. The main step of variable splitting is to 

transform the problem into an equivalent one through introducing artificial variables which are 

copies of some original decision variables. The resulting variable copy constraints are usually relaxed 

by the LR algorithm. By using this technique, problem AP can be solved as follows. 

3.2.1. An equivalent problem 

In problem AP, a set of artificial variables and the following variable 

copy constraints:  

(29) 

 

are added and an equivalent problem is obtained below.  

Equivalent problem (EP) 

Minimize gE, with  

(30) 

 

subject to  

(31) 

 



(32) 

 

and constraints (7), (8), (10), (12), (15), (20), (21), (22), (23), (24), (26), (27), (28) and (29).  

3.2.2. Relaxed problem 

To give an explicit expression for the relaxed problem, we define π(t, s) to be the scenario with the 

smallest index among the scenarios sharing the same bundle with scenario s in period t, i.e., 

, t∈T, s∈S, and let  

 

Based on the above definitions, constraints (12) are expressed equivalently by  

(33) 

 

Relaxing coupling constraints (33) and (29) using Lagrangian multipliers and , 

respectively, i∈I, t∈T, s∈S, we can generate the following relaxed problem. 

(LRP) 

Minimize gLR(μμμμ), with  

(34) 

 

subject to constraints (7), (8), (10), (15), (20), (21), (22), (23), (24), (26), (27), (28), (31) and (32).  

Here, μμμμ is the multiplier vector with elements , q=1,2, i∈I, t∈T, s∈S. Problem LRP can be 

decomposed into two independent subproblems, LRP1 and LRP2, as follows. 

(LRP1) 

Minimize gLR1(μμμμ), with  

(35) 

 



subject to constraints (7), (8), (10), (20), (21), (22), (26), (27), (28), (31) and (32).  

(LRP2) 

Minimize gLR2(μμμμ), with  

(36) 

 

subject to constraints (15).  

Problem LRP1 is a linear programming problem and can be solved optimally using standard 

optimization software. Since is convex, there must be 

. Therefore constraints (23) and (24) can be satisfied naturally by any solution to problem LRP1 and 

are omitted from the problem. Since is a binary variable, problem LRP2 can be easily solved by 

using the following approach.  

Step 1. Compute , i∈I, t∈T, s∈S. 

Step 2. Let if and otherwise, i∈I, t∈T, s∈S. 

3.2.3. Construction of a feasible solution 

The solution to the relaxed problem is usually infeasible to problem EP due to the relaxation of the 

coupling constraints. Fortunately, the relaxation solution can be easily recovered to be feasible 

based on the optimal solution to problem LRP1 by letting if and 

otherwise. Taking the obtained feasible solution as the initial 

solution, we adjust the decision variables according to the following strategy to improve the solution 

quality.  

Step 1. Set . 

Step 2. Set and Vs=∅, where Vs is the set of visited scenarios in period . 

Step 3. Adjust the production quantities between period and period without violating the 

indistinguishability constraints. If and , let  

 

i∈I, t∈T, s∈S, where Q(t, s) is the scenario bundle that includes scenario s in period t, as defined in 

Section 2.2. If variables, , are feasible to problem EP, let  

 



Step 4. If can offer a lower upper bound for problem EP, update X 

with . Update Vs with . 

Step 5. If , go to Step 6. Otherwise, set . 

Step 6. If there exists some scenario j∈Vs satisfying , update Vs with and go to Step 4. 

Otherwise, go to Step 3. 

Step 7. If , stop. Otherwise, set and go to Step 2. 

The obtained feasible solution can provide an upper bound for problem EP. 

 


