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Abstract 

Under nonlinear road pricing (or tolling), the price charged is not strictly proportional to the distance 

travelled inside a tolling area, the generalized travel cost is not link-wise additive, and finding a user 

equilibrium distribution is typically formulated as a complementarity problem. The latter is a difficult 

problem to solve in mathematical programming. In this paper, we use piecewise linear functions to 

determine tolls and show that finding a user equilibrium distribution with such functions can be 

formulated as a convex optimization problem that is based on path flows and solvable by traditional 

algorithms such as simplicial decomposition. For area-based and two-part pricing schemes, the 

tolling function consists of only one linear piece and finding a user equilibrium distribution reduces 



to a convex optimization problem formulated in terms of link flows and solvable by any software for 

linearly constrained convex programs. 

To find an optimal pricing scheme, e.g., one that maximizes the social benefit, we formulate the 

problem as a mathematical program with equilibrium constraints, an optimization problem that is 

generally non-convex and difficult to solve. However, it is possible to use search algorithms to find 

an optimal scheme because the number of parameters in our piecewise linear function is few. To 

illustrate, we use a coordinate search algorithm to find an optimal two-part pricing scheme for a 

small network with randomly generated data. 

 

Highlights 

► This paper assumes that the amounts of toll that users pay varies nonlinearly with the distance 

they travel inside a tolling area. ► When the toll pricing function is piecewise linear, the tolled UE 

problem is a convex program. ► For two-part and area-based pricing, the UE conditions and 

problem can be stated using link flows. 
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1. Introduction 

Nonlinear pricing generally refers to a case in which the price or tariff is not strictly proportional to 

the quantity purchased. Economists have been studying such pricing since the discussion of its 

manifestations in Dupuit (1894) and the later categorization of the phenomenon in Pigou (1920). 

Today, nonlinear pricing is prevalent in many industries. For example, railroad tariffs generally 

depend on the weight, volume, and distance of each shipment. However, those using full-cars 

and/or over long distances often receive discounts. The price per kilowatt-hour of electricity is 

different for different types of users. Heavy users during peak hours generally pay higher rates. 

Airlines routinely offer discount tickets for advance purchase, with non-cancellation restriction, and 

in competitive markets. In each of these examples, the average price paid per unit varies depending 

on characteristics of the purchase such as its size, time of usage, and restrictions. 

In practice, road pricing is often nonlinear. The tolls in, e.g., Singapore (Menon et al., 1993), London 

(Santos and Shaffer, 2004), and Stockholm (Stockholmsforsoket, 2006) are not proportional to the 

distance travelled inside the tolling areas. In Stockholm, tolls are also not proportional to the 

number of times a user enters the tolling area. The amount of tolls paid on a given day is limited to 



SEK 60. After paying this maximum amount, users can freely enter the tolling area for the rest of the 

day. For its congestion charge, London offers monthly and annual passes to frequent users at an 

approximately 15% discount. Similarly, the Dulles Greenway’s VIP Frequent Rider Program gives 

rebates to users with high mileage. During phase I of its Value Pricing Project on Interstate 15, San 

Diego sold $50 monthly permits that allow single occupancy vehicles to use lanes reserved for high 

occupancy vehicles. (During phase II, the permits were replaced by tolls.) 

Despite its widespread use, the literature on nonlinear road pricing is limited. De Borger (2001) 

proposes a discrete choice model to study optimal two-part tariffs in the presence of externalities. In 

their nonlinear pricing study, Wang et al. (2011) consider three questions: which nonlinear pricing 

scheme (among the five they consider) is most profitable, how does the most profitable choice 

depend on congestion, and does usage-only pricing necessarily denominate other nonlinear schemes 

if congestion is severe? Both [De Borger, 2001] and [Wang et al., 2011] opine that nonlinear pricing 

has been largely overlooked in the literature. Separate from the previous two papers, Gabriel and 

Bernstein (1997a) formulate the problem of finding a user equilibrium (UE) distribution on general 

road networks (or, more simply, the UE problem) when travel costs are not link-wise additive as a 

nonlinear complementarity problem or NCP. In their formulation, one component of the path travel 

cost is a nonlinear function of its travel distance. To solve their UE problem, Gabriel and Bernstein 

(1997a) propose an algorithm based on nonsmooth equations and sequential quadratic 

programming (see also Gabriel and Bernstein, 1997b). Lo and Chen (2000) consider a similar problem 

and convert their NCP into an unconstrained optimization problem based on a merit function. More 

recently, Agdeppa et al. (2007) modify the model in Gabriel and Bernstein (1997a) by introducing a 

disutility function and formulate the problem as a monotone mixed complementarity problem 

instead. [Maruyama and Harata, 2006] and [Maruyama and Sumalee, 2007] propose an algorithm 

for area-based pricing, one form of nonlinear pricing. The authors of the last two papers observe 

that area-based pricing is not link-wise additive and it may be reasonable and intuitive to conclude 

from this that no equilibrium condition based on link flows exists. However, as demonstrated below, 

this conclusion is incorrect. 

This paper considers nonlinear pricing in the context of managing travel demand, reducing 

congestion, and, perhaps, lessening the environmental impact in a tolling area. Although it is 

common to assume that a tolling area consists of connected roads or roads in a connected 

geographical area, such an assumption is unnecessary. For example, a tolling area can consist of not 

necessarily connected roads or highways that are under the jurisdiction of a single entity (a 

government agency or private company). It is also possible to let the tolling area be the entire road 

network and every road user must pay tolls. Doing so reduces our problem to the one addressed in 

Gabriel and Bernstein (1977a). 

In this paper, the amount of toll that users pay, T(ℓ), varies nonlinearly with ℓ, the distance travelled 

inside the tolling area. (Henceforth, T(ℓ) is also referred to as the tolling or pricing function.) We 

assume that T(ℓ) is piecewise linear and the number of linear pieces is two or less. As observed in 

Wilson (1993), a piecewise linear function with a small number of linear pieces is easier to 

understand, thus more practical, and can realize most of the advantages of general nonlinear pricing 

functions. As demonstrated below, the UE problem with piecewise linear pricing functions reduces 

to an optimization problem that is similar to the standard UE problem (see, e.g., Florian and Hearn, 

2003) and solvable by well-known algorithms such as simplicial decomposition. For area-based and 



two-part pricing schemes, both user equilibrium conditions and the UE problem can be formulated 

in term of link flows despite the fact that the generalized cost is not link-wise additive. Solving the 

link-based UE problem eliminates the need to maintain information about individual paths and 

typically requires less computational resources. In fact, the UE problem with area-based and two-

part pricing schemes can be solved by any software for linearly constrained convex programs. 

To our knowledge, there has been little or no attempt to find an optimal nonlinear pricing scheme 

for a general road network. To find an optimal scheme, De Borger (2001) assumes that the travel 

demand is measured in kilometres without an explicit road network. Similarly, Wang et al. (2011) 

consider a network with only one link. In this paper, we formulate the problem of finding a nonlinear 

pricing scheme that, e.g., maximizes the social benefit as a mathematical program with equilibrium 

constraints. We demonstrate that such a problem can be solved using a search algorithm when the 

tolling function is piecewise linear. 

For the remainder, Section 2 describes the pricing functions considered in this paper. Section 3 

defines our notation and states path-based UE conditions for later reference. Section 4 formulates 

the UE problem in terms of path flows and modifies simplicial decomposition to find a UE flow-

demand pair under our nonlinear pricing functions. Section 5 states link-based UE conditions and 

discusses when these conditions are equivalent to those based on paths. Section 6 presents a search 

algorithm for finding optimal pricing parameters, e.g., those that maximize the social benefit. Finally, 

Section 7 studies numerical results from a small road network with randomly generated data and 

Section 8 concludes the paper. To illustrate the simplicity of using link flows, the Appendix gives a 

version of the Frank-Wolfe algorithm (a well-known algorithm for linearly constrained convex 

programs – see Frank and Wolfe, 1956) for solving the UE problem with two-part pricing. 

2. Nonlinear pricing functions 

The tolling function, T(ℓ), in this paper is assumed for simplicity to be in units of time and of the 

form:  

 

where Tmin(ℓ) = min{β1 + μ1 ℓ, β2 + μ2ℓ} and Tmax(ℓ) = max{β1 + μ1ℓ, β2 + μ2ℓ}. Recall that ℓ is 

the distance travelled inside the tolling area. (Herein, distances are measured in miles and we refer 

to a rate or fee based on miles travelled as a “VMT fee”, where VMT is an abbreviation for “

vehicle-mile travelled.”) In both Tmin(ℓ) and Tmax(ℓ), μ1 and μ2 are nonnegative VMT fees. 

Typically, β1 and β2 are nonnegative. However, one may be negative to reproduce some tolling 

functions in practice more accurately. (See the discussion about three-part tariffs below.)  

Both Tmin(ℓ) and Tmax(ℓ) are piecewise linear functions with two linear pieces. Although the 

number of linear pieces can be larger, i.e., Tmin(ℓ) = min{β1 + μ1ℓ, ⋯, βn + μnℓ} and Tmax(ℓ

) = max{β1 + μ1ℓ, ⋯, βn + μnℓ}, where n ⩾ 2, we set n = 2 in this paper for two reasons. First, the 

results for n = 2 can be extended to the cases with larger n without much difficulty. As cautioned in 

Wilson (1993), the second reason is that large n is often not practical. Pricing functions with many 

linear pieces generally result in tolling schemes too complex for motorists to understand and 



respond properly. Moreover, pricing functions with only a few linear pieces can typically capture 

most of the benefits offered by those with many. 

When are chosen appropriately, Tmin(ℓ) and Tmax(ℓ) capture common nonlinear 

pricing functions in the economics and road pricing literature (see, e.g., [Wilson, 1993] and [Wang et 

al., 2011]). Fig. 2.1 displays tolling functions based on Tmin(ℓ). In case (a), the VMT fee for a longer 

distance (μ2) is smaller than the one for a shorter distance (μ1), i.e., heavy road users receive 

discounts. Case (b) allows users to either pay a VMT fee at a rate μ1 or a fixed fee, β2, for unlimited 

travel inside the tolling area. The former is more economical when the travel distance is sufficiently 

short, i.e., less than the point where μ1ℓ = β2. Although both cases may be suitable for many 

industries, it is not clear that they would be adopted for congestion mitigation. 

 

Fig. 2.1. Pricing functions based on Tmin(ℓ). 

For the pricing functions based on Tmax(ℓ) in Fig. 2.2, case (a) requires users to pay two fees. One is 

an access fee (β1) and the other is a VMT fee (μ1). Economists commonly refer to this form of 

pricing as a two-part tariff or pricing scheme. Similarly, the function in case (b) also consists of an 

access and VMT fee. However, the latter only applies when the travel distance exceeds a threshold, 

a point where β1 + μ1ℓ = β2. (When β2 and μ1 are fixed, β1 may need to be negative to achieve 

a desired threshold value.) In economics, some refer to case (b) as a three-part tariff. Instead of 

giving discounts to heavy users, case (c) discourages heavy road usage by charging a higher VMT fee 

(μ1) when the travel distance exceeds a threshold, a point where β1 + μ1ℓ = β2 + μ2ℓ. Finally, the 

pricing function for case (d) is suitable for area-based pricing (see, e.g., Maruyama and Sumalee, 

2007), a tolling scheme under which users can enter and use the tolling area as often and as much as 

they like during a specified period after paying an access fee, β1. (Area-based pricing is different 

from cordon pricing (see, e.g., Zhang and Yang, 2004). For the latter, users generally pay a fee each 

time they enter the tolling area.) In addition to those shown in the two figures, setting β1, β2, and 

μ2 to zero reduces T(ℓ) to linear pricing, i.e., T(ℓ) = μ1ℓ. 



 

Fig. 2.2. Pricing functions based on Tmax(ℓ). 


